Mitochondrial proton and electron leaks.

نویسندگان

  • Martin Jastroch
  • Ajit S Divakaruni
  • Shona Mookerjee
  • Jason R Treberg
  • Martin D Brand
چکیده

Mitochondrial proton and electron leak have a major impact on mitochondrial coupling efficiency and production of reactive oxygen species. In the first part of this chapter, we address the molecular nature of the basal and inducible proton leak pathways, and their physiological importance. The basal leak is unregulated, and a major proportion can be attributed to mitochondrial anion carriers, whereas the proton leak through the lipid bilayer appears to be minor. The basal proton leak is cell-type specific and correlates with metabolic rate. The inducible leak through the ANT (adenine nucleotide translocase) and UCPs (uncoupling proteins) can be activated by fatty acids, superoxide or lipid peroxidation products. The physiological role of inducible leak through UCP1 in mammalian brown adipose tissue is heat production, whereas the roles of non-mammalian UCP1 and its paralogous proteins, in particular UCP2 and UCP3, are not yet resolved. The second part of the chapter focuses on the electron leak that occurs in the mitochondrial electron transport chain. Exit of electrons prior to the reduction of oxygen to water at cytochrome c oxidase causes superoxide production. As the mechanisms of electron leak are crucial to understanding their physiological relevance, we summarize the mechanisms and topology of electron leak from complexes I and III in studies using isolated mitochondria. We also highlight recent progress and challenges of assessing electron leak in the living cell. Finally, we emphasize the importance of proton and electron leak as therapeutic targets in body mass regulation and insulin secretion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The efficiency and plasticity of mitochondrial energy transduction.

Since it was first realized that biological energy transduction involves oxygen and ATP, opinions about the amount of ATP made per oxygen consumed have continually evolved. The coupling efficiency is crucial because it constrains mechanistic models of the electron-transport chain and ATP synthase, and underpins the physiology and ecology of how organisms prosper in a thermodynamically hostile e...

متن کامل

Mitochondrial ion circuits.

Proton circuits across the inner mitochondrial membrane link the primary energy generators, namely the complexes of the electron transport chain, to multiple energy utilizing processes, including the ATP synthase, inherent proton leak pathways, metabolite transport and linked circuits of sodium and calcium. These mitochondrial circuits can be monitored in both isolated preparations and intact c...

متن کامل

Structures and proton-pumping strategies of mitochondrial respiratory enzymes.

Enzymes of the mitochondrial respiratory chain serve as proton pumps, using the energy made available from electron transfer reactions to transport protons across the inner mitochondrial membrane and create an electrochemical gradient used for the production of ATP. The ATP synthase enzyme is reversible and can also serve as a proton pump by coupling ATP hydrolysis to proton translocation. Each...

متن کامل

Functional effects of mutations in cytochrome c oxidase related to prostate cancer.

A number of missense mutations in subunit I of cytochrome c oxidase (CytcO) have previously been linked to prostate cancer (Petros et al., 2005). To investigate the effects of these mutations at the molecular level, in the present study we prepared four different structural variants of the bacterial Rhodobacter sphaeroides CytcO (cytochrome aa(3)), each carrying one amino-acid residue replaceme...

متن کامل

Mitochondrial proton conductance and H+/O ratio are independent of electron transport rate in isolated hepatocytes.

In this paper we examine the non-linearity of the relationship between the proton electrochemical gradient across the mitochondrial inner membrane (delta p) and oxygen consumption of non-phosphorylating mitochondria in situ in hepatocytes. Models proposing to explain the non-linear relationship were tested experimentally. It was shown that the mitochondrial proton conductance and the number of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Essays in biochemistry

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2010